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Efficient estimation of population mean in the presence of
non-response and measurement error

Kuldeep Kumar Tiwari1, Vishwantra Sharma2

ABSTRACT

In real-world surveys, non-response and measurement errors are common, therefore studying
them together seems rational. Some population mean estimators are modified and studied
in the presence of non-response and measurement errors. Bias and mean squared error
expressions are derived under different cases. For all estimators, a theoretical comparison
is made with the sample mean per unit estimator. The Monte-Carlo simulation is used to
present a detailed picture of all estimators’ performance.

Key words: non-response, measurement error, mean squared error, efficiency, mean estima-
tion.

1. Introduction

The sampling technique is the most effective way to make population predictions by
using a sample of units from the population. All of the survey’s sampling strategies are
theoretically based on some assumptions. One assumption that almost never holds true in
real-world surveys is that all units in the sample will respond. Non-response could be due
to a variety of factors, including the respondent’s availability, discomfort with the ques-
tions/interviewer, or a lack of desire to contribute. However, the increase in error caused by
non-response had a significant impact on the final results. In the presence of non-response in
sample surveys, Hansen and Hurwitz (1946) proposed a method for estimating the popula-
tion mean. They usually use it for mail surveys because they are less expensive. To use this
method, first send a questionnaire to all of the units in the sample via mail. After that, select
a sub-sample from the non-respondent units and conduct a direct or telephone interview
with them. When contacted directly, he assumes that every unit in the non-respondent sub-
sample responds. Hansen and Hurwitz (1946) defined the estimator of population mean in
the presence of non-response as ȳ∗t =( n1

n )ȳn1 +( n2
n )ȳr; where ȳn1 =

1
n1

∑
n1
i=1 yi, ȳr =

1
r ∑

r
i=1 yi,

n is sample size, n1 is the number of respondent in the sample and n2 is the number of non-
respondent such that n1 +n2 = n. r = n2

k ,k > 0 is the size of sub-sample of non-respondent.
Using this concept of handling non-response, many authors have proposed estimators for a
variety of cases over decades. Some of them are Cochran (1977), Rao (1986), Okafor and
Lee (2000), Kreuter et al. (2010), Khan et al. (2014), Luengo (2016), Khare and Sinha
(2019), Sharma and Kumar (2020), Pandey et al. (2021), Sinha et al. (2022).
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Aside from non-response, measurement error is another error that affects the results of
a real-life survey. We assume that all of the data that have been recorded and processed
are accurate. However, in real-life surveys, this is purely hypothetical. Measurement error
can be caused by a variety of factors, including interviewer bias, respondent bias, error in
recording and processing the data, and so on. Some notable works on the estimation in the
presence of measurement error are Cochran (1977), Fuller (1987), Shalabh (1997), Srivas-
tava and Shalabh (2001), Gregoire and Salas (2009), Diane and Giordan (2012), Tiwari et
al. 2022.

Since the presence of non-response and measurement error is expected to be in any
survey, so it is desirable to study both of them at the same time. Very few works have been
done so far on this. The contribution of researchers in this area is Kumar et al. (2015),
Singh and Sharma (2015), Azeem and Hanif (2016), Kumar and Bhougal (2018), Kumar et
al. (2018), Singh et al. (2018), Zahid et al. (2022), Tiwari et al. (2022).

So, here we carried out a study on the estimation of population mean in the presence of
non-response and measurement error.

2. Notations

Let a finite population of size N be divided into two groups as respondent of size N1

and non-respondent of size N2. Let a sample of size n be taken from the population among
which n1 are respondent and n2 are non-respondent. A sub-sample of size r(= n2

k ),k > 0 is
taken from n2 non-respondents. At ith unit of population, yi and xi be the observed values
of study and auxiliary variables and yt i, xt i be their true values, respectively.

The other notations are x̄∗t = ( n1
n )x̄n1 +( n2

n )ȳr, x̄n1 =
1
n1

∑
n1
i=1 xi, x̄r =

1
r ∑

r
i=1 xi,

x̄ = 1
n ∑

n
i=1 xi, ȳ = 1

n ∑
n
i=1 yi.

The population mean and variance for y are Ȳ = 1
N ∑

N
i=1 Yi, S2

Y = 1
N−1 ∑

N
i=1(Yi−Ȳ )2. The

population mean and variance for x are X̄ = 1
N ∑

N
i=1 Xi, S2

X = 1
N−1 ∑

N
i=1(Xi− X̄)2. Population

variance for y and x for the group of non-respondent is
S2

Y (2) =
1

N2−1 ∑
N2
i=1(Yi − Ȳ )2 and S2

X(2) =
1

N2−1 ∑
N2
i=1(Xi − X̄)2 respectively.

Let Ui = yi − yt i and Vi = xi − xt i be the measurement error on the study and auxiliary
variable respectively at ith unit of the population. So, ȳ∗ = ȳ∗t + Ū∗ and x̄∗ = x̄∗t + V̄ ∗,
where Ū∗ = ( n1

n )Ūn1 +( n2
n )Ūr, Ūn1 =

1
n1

∑
n1
i=1 Ui, Ūr =

1
r ∑

r
i=1 Ui and V̄ ∗ = ( n1

n )V̄n1 +( n2
n )V̄r,

V̄n1 =
1
n1

∑
n1
i=1 Vi, V̄r =

1
r ∑

r
i=1 Vi.

Study variable y and auxiliary variable x are correlated with correlation coefficient ρ

and ρ2 is the correlation coefficient between y and x for the group of non-respondent. Since
there is no relationship between measurement errors occurring on y and x, so U and V
must be independent. Also, since there will be both under-reporting and over-reporting in
measurement error, so we assume that mean of U and mean of V are zero. The population
variance of measurement error assosiated with y is S2

U = 1
N−1 ∑

N
i=1(Ui−Ū)2 and the popula-

tion variance of measurement error assosiated with x is S2
V = 1

N−1 ∑
N
i=1(Vi−V̄ )2. Population

variances of U and V for the group of non-respondent are S2
U(2) =

1
N2−1 ∑

N2
i=1(Ui −Ū)2 and

S2
V (2) =

1
N2−1 ∑

N2
i=1(Vi − V̄ )2 respectively. byx is sample regression coefficient of y on x.
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Other notations used in the article are: θ = W2(k−1)
n , W2 =

N2
N , λ = 1

n −
1
N , R = Ȳ

X̄ , w1 =
n1
n ,

w2 =
n2
n .

3. Brief review of literature

In this section, we discuss some estimators from the literature that will be further used.
Searls (1964) proposes an estimator t1 = kȳ in simple random sampling, where k is

a suitable constant. He shows that MSE(t1), that is mean square error of t1 is less than
the variance of ȳ, hence t1 is preferable over usual estimator ȳ. Cochran (1940) defined
the ratio estimator t2 = ȳ( X̄

x̄ ). He further studied the ratio estimator in the presence of
non-response when non-response occurs on both study variables and auxiliary variables in
Cochran (1977). Rao (1986) studied the ratio estimator when there is non-response only on
the study variable. Shalabh (1997) adapted the ratio estimator and presented a study on the
ratio method of estimation in the presence of measurement error. Murthy (1964) proposes
the product method of estimation by defining the estimator t3 = ȳ( x̄

X̄ ). He shows that the
product method of estimation is better to use when there is a high negative correlation be-
tween the study and the auxiliary variable. Khare and Srivastava (1993) studied ratio and
product estimator in double sampling when there is non-response on both study and aux-
iliary variables. Cochran (1977) studied the usual regression estimator t4 = ȳ+ byx(X̄ − x̄)
and its properties when there is non-response on both study and auxiliary variables. Srivas-
tava and Shalabh (2001) examined the regression estimator in the presence of measurement
error. Okafor and Lee (2000) presented a study on ratio and regression estimator when
there is non-response on both variables in the double sampling scheme. Srivastava (1967)
generalise the ratio estimator by proposing t5 = ȳ( X̄

x̄ )
α . Rao (1991) proposed a difference

estimator t6 = k1ȳ+ k2(X̄ − x̄) in simple random sampling and shows that it works better
than regression estimator. Bahl and Tuteja (1991) first time uses exponential function to es-
timate the population mean by defining ratio and product type estimator t7 = ȳexp( X̄−x̄

X̄+x̄ ) and

t8 = ȳexp( x̄−X̄
x̄+X̄ ) respectively. Using ratio and product estimator, Singh and Espejo (2003)

proposed an estimator as t9 = ȳ[a( X̄
x̄ )+(1−a)( x̄

X̄ )] and show that its optimum mean square
error (MSE) is the same as regression estimator. Kadilar and Cingi (2004) proposed an es-
timator using regression and ratio estimator as t10 = [ȳ+byx(X̄ − x̄)]( X̄

x̄ ). Singh and Sharma
(2015) studied the ratio and regression estimator in the presence of non-response and mea-
surement error when non-response occurs on both study variable and auxiliary variable.

Now we will adapt the estimators t1, t2,..,t10, and study it in the simultaneous presence
of measurement error and non-response.

4. Adapted estimators

We have adapted estimators t1, t2,..,t10 to study them in the presence of non-response
and measurement error. Here, we redefine them in two cases and will further investigate.
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4.1. Case-1

When non-response occurs only on study variable then t1, t2,..,t10 can be redefined as

1 t11 = k1ȳ∗, k1 is constant.

2 t12 = ȳ∗( X̄
x̄ )

3 t13 = ȳ∗( x̄
X̄ )

4 t14 = ȳ∗+b1(X̄ − x̄), b1 is constant.

5 t15 = ȳ∗( X̄
x̄ )

α1 , α1 is constant.

6 t16 = k11ȳ∗+ k12(X̄ − x̄), k11, k12 are constants.

7 t17 = ȳ∗ exp( X̄−x̄
X̄+x̄ )

8 t18 = ȳ∗ exp( x̄−X̄
x̄+X̄ )

9 t19 = ȳ∗[a1(
X̄
x̄ )+(1−a1)(

x̄
X̄ )], a1 is constant.

10 t20 = [ȳ∗+d1(X̄ − x̄)]( X̄
x̄ ), d1 is constant.

with constants to be determined for minimum MSE.

4.2. Case-2

When non-response occurs on both study and auxiliary variable then t1, t2,..,t10 can be
redefined as

1 t21 = k2ȳ∗, k2 is constant.

2 t22 = ȳ∗( X̄
x̄∗ )

3 t23 = ȳ∗( x̄∗
X̄ )

4 t24 = ȳ∗+b2(X̄ − x̄∗), b2 is constant.

5 t25 = ȳ∗( X̄
x̄∗ )

α2 , α2 is constant.

6 t26 = k21ȳ∗+ k22(X̄ − x̄∗), k21 and k22 are constants.

7 t27 = ȳ∗ exp( X̄−x̄∗
X̄+x̄∗ )

8 t28 = ȳ∗ exp( x̄∗−X̄
x̄∗+X̄ )

9 t29 = ȳ∗[a2(
X̄
x̄∗ )+(1−a2)(

x̄∗
X̄ )], a2 is constant.

10 t30 = [ȳ∗+d2(X̄ − x̄∗)]( X̄
x̄∗ ), d2 is constant.

with constants to be determined for minimum MSE.
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5. Bias and Mean square error

We derive the bias and mean square error (MSE) of the estimators using the following
terms.

U∗ = y∗i −Y ∗
i and ω∗

Y = 1√
n ∑

n
i=1(Y

∗
i − Ȳ ), ω∗

U = 1√
n ∑

n
i=1 U∗

i

Adding ω∗
Y and ω∗

U and dividing both side by
√

n, we have

ω∗
Y+ω∗

U√
n = 1

n ∑
n
i=1[(Y

∗
i − Ȳ )+U∗

i ] which is ω∗
Y+ω∗

U√
n = 1

n ∑
n
i=1 y∗i − Ȳ

So,

ȳ∗ = Ȳ +ξ
∗
Y ; where ξ

∗
Y =

ω∗
Y +ω∗

U√
n

. (1)

Similarly, for ωX = 1√
n ∑

n
i=1(Xi − X̄) and ωV = 1√

n ∑
n
i=1 Vi, we have

x̄ = X̄ +ξX ; where ξX =
ωX +ωV√

n
. (2)

Again, for V ∗ = x∗i −X∗
i and ω∗

X = 1√
n ∑

n
i=1(X

∗
i − X̄), ω∗

V = 1√
n ∑

n
i=1 V ∗

i , we have

x̄∗ = X̄ +ξ
∗
X ; where ξ

∗
X =

ω∗
X +ω∗

V√
n

. (3)

Expected values of errors are

E(ξ ∗2
Y ) = AMSE +AME = A, (4)

where AMSE = λS2
Y +θS2

Y (2) and AME = λS2
U +θS2

U(2).

E(ξ 2
X ) = BMSE +BME = B, (5)

where BMSE = λS2
X and AME = λS2

V .

E(ξ ∗
Y ξX ) = λρSY SX =C, (6)

E(ξ ∗2
X ) = DMSE +DME = D, (7)

where DMSE = λS2
X +θS2

X(2) and DME = λS2
V +θS2

V (2).

E(ξ ∗
Y ξ

∗
X ) = λρSY SX +θρ2SY (2)SX(2) = E, (8)

and
E(ξ ∗

Y ) = E(ξX ) = E(ξ ∗
X ) = E(ξU ) = E(ξV ) = 0. (9)

Now, using these values we derive the bias and MSE for all the estimators.
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5.1. Case-1

5.1.1 t11 = k1ȳ∗

Using equation (1), express t11 in terms of error as t11 = k1(Ȳ +ξ ∗
Y ), so

t11 − Ȳ = (k1 −1)Ȳ + k1ξ
∗
Y . (10)

Taking expectation on both sides of equation (10), we get

Bias(t11) = (k1 −1)Ȳ . (11)

Now squaring both sides of equation (10), we have

(t11 − Ȳ )2 = (k1 −1)2Ȳ 2 + k2
1ξ

∗2
Y +2k1(k1 −1)Ȳ ξ

∗
Y , (12)

taking expectation to equation (12), we get

MSE(t11) = (k1 −1)2Ȳ 2 + k2
1A. (13)

Minimizing MSE(t11) for k1, we get the optimum value of k1 as ko
1 =

Ȳ 2

Ȳ 2+A
Now, putting optimum value of k1 in equation (13), we get minimum MSE of t11.

MSEmin(t11) =
AȲ 2

A+ Ȳ 2 . (14)

5.1.2 t12 = ȳ∗( X̄
x̄ )

Expanding t12 using equation (1) and (2), we have t12 = (Ȳ + ξ ∗
Y )

X̄
(X̄+ξX )

or t12 = (Ȳ +

ξ ∗
Y )(1+

ξX
X̄ )−1.

Assuming |ξ | < 1, expanding series in the right side and terminating the terms having
ξ ’s degree greater than two, we have

t12 = (Ȳ +ξ
∗
Y )
(
1− ξX

X̄
+

ξ 2
X

X̄2

)
,

on simplifying, we get

t12 − Ȳ = ξ
∗
Y −RξX +

Rξ 2
X

X̄
− ξ ∗

Y ξX

X̄
, (15)

where R = Ȳ
X̄ .

Taking expectation on both sides of equation (15), we get

Bias(t12) =
RB−C

X̄
. (16)
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Squaring equation (15) and terminating terms with ξ ’s degree greater than two and
simplifying, we get

(t12 − Ȳ )2 = ξ
∗2
Y −R2

ξ
2
X −2Rξ

∗
Y ξX , (17)

taking expectation to equation (17), we get

MSE(t12) = A+R2B−2RC. (18)

5.1.3 t13 = ȳ∗( x̄
X̄ )

Proceeding as in 5.1.2, we get the bias and MSE of t13 as

Bias(t13) =
C
X̄
, (19)

and
MSE(t13) = A+R2B+2RC. (20)

5.1.4 t14 = ȳ∗+b1(X̄ − x̄)

Using equation (1) and (2) expanding t14, we get t14 = Ȳ +ξ ∗
Y −b1ξX

so we have
t14 − Ȳ = ξ

∗
Y −b1ξX . (21)

On taking expectation to equation (21), we get

Bias(t14) = 0. (22)

Squaring both sides of equation (21) and taking expectation, we get

MSE(t14) = A+b2
1B−2b1C. (23)

Minimizing MSE(t14) for b1, the optimum value of b1 is bo
1 =

C
B .

Using optimum value of b1 in equation (23), we get

MSEmin(t14) = A− C2

B
. (24)

5.1.5 t15 = ȳ∗( X̄
x̄ )

α1

Proceeding as in 5.1.2, we get the bias and MSE of t15 as

Bias(t15) =
α1(α1 +1)RB−2α1C

2X̄
, (25)

and
MSE(t15) = A+α

2
1 R2B−2α1RC. (26)

Minimizing MSE(t15) for α1, the optimum value of α1 is αo
1 = C

RB .
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Putting optimum value of α1 in equation (26), we get

MSEmin(t15) = A− C2

B
. (27)

5.1.6 t16 = k11ȳ∗+ k12(X̄ − x̄)

Expressing t16 in terms of error using equation (1) and (2), we have t16 = k11(Ȳ +ξ ∗
Y )+

k12(X̄ − X̄ −ξX ). On simplifying, we get

t16 − Ȳ = (k11 −1)Ȳ + k11ξ
∗
Y − k12ξX , (28)

taking expectation on both sides of equation (28), we get

Bias(t16) = (k11 −1)Ȳ . (29)

Squaring both sides of equation (28), have

(t16 − Ȳ )2 = (k11 −1)2Ȳ 2 + k2
11ξ

∗2
Y + k2

12ξ
2
X +2k11(k11 −1)Ȳ ξ

∗
Y −2k11k12ξ

∗
Y ξX

−2k12(k11 −1)Ȳ ξX , (30)

taking expectation on both sides of equation (30), we get

MSE(t16) = (k11 −1)2Ȳ 2 + k2
11A+ k2

12B−2k11k12C. (31)

Minimizing MSE(t16) for k11 and k12, we get the optimum values of k11 and k12 as
ko

11 =
BȲ 2

BȲ 2+AB−C2 and ko
12 =

CȲ 2

BȲ 2+AB−C2 .
Using optimum values of k11 and k12 in equation (31), we get minimum MSE.

MSEmin(t16) =
Ȳ 2(AB−C2)

BȲ 2 +AB−C2 . (32)

5.1.7 t17 = ȳ∗ exp( X̄−x̄
X̄+x̄ )

Expressing t17 in terms of error as t17 = (Ȳ +ξ ∗
Y )exp

( X̄−X̄−ξX
X̄+X̄+ξX

)
. On simplifying, we get

t17 = (Ȳ + ξ ∗
Y )exp

[
− ξX

2X̄

(
1+ ξX

2X̄

)−1]. Expand the series and ignore the terms having ξ ’s

degree greater than two. After simplification, we get t17 = (Ȳ +ξ ∗
Y )(1−

ξX
2X̄ + 3

8
ξ 2

X
X̄2 ). So, we

have

t17 − Ȳ = ξ
∗
Y − RξX

2
+

3
8

Rξ 2
X

X̄
− ξ ∗

Y ξX

2X̄
. (33)

Taking expectation on both sides of equation (33), we get

Bias(t17) =
3RB−4C

8X̄
. (34)
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Squaring equation (33) on both sides and taking expectation, we get

MSE(t17) = A+
R2B

4
−RC. (35)

5.1.8 t18 = ȳ∗ exp( x̄−X̄
x̄+X̄ )

Proceeding on the lines of 5.1.7, we get the bias and MSE of t18 as

Bias(t18) =
4C−RB

8X̄
, (36)

MSE(t18) = A+
R2B

4
+RC. (37)

5.1.9 t19 = ȳ∗[a1(
X̄
x̄ )+(1−a1)(

x̄
X̄ )]

Express t19 in terms of error as t19 = (Ȳ +ξ ∗
Y )[a1(

X̄
X̄+ξX

)+ (1−a1)
(X̄+ξX )

X̄ ]. After little

simplification t19 = (Ȳ +ξ ∗
Y )[a1(1+

ξX
X̄ )−1+(1−a1)(1+

ξX
X̄ )]. Expand the series and ignore

the terms having ξ ’s degree greater than two. On simplification, we get t19 = (Ȳ +ξ ∗
Y )[1+

(1−2a1)
ξX
X̄ +

a1ξ 2
X

X̄2 ]. So, we have

t19 − Ȳ = ξ
∗
Y +(1−2a1)RξX +

a1Rξ 2
X

X̄
+(1−2a1)

ξ ∗
Y ξX

X̄
. (38)

Taking expectation on both sides of equation (38), we get

Bias(t19) =
a1RB+(1−2a1)C

X̄
. (39)

Squaring both sides of equation (38) and taking expectation, we get

MSE(t19) = A+(1−2a1)
2R2B+2R(1−2a1)C. (40)

Minimizing MSE(t19) for a1, we get the optimum value of a1 as ao
1 =

1
2 +

C
2RB .

Putting optimum value of a1 in equation (40), we get

MSEmin(t19) = A− C2

B
. (41)

5.1.10 t20 = [ȳ∗+d1(X̄ − x̄)]( X̄
x̄ )

Expressing t20 in terms of error and simplifying, we get

t20 − Ȳ = ξ
∗
Y − (R+d1)ξX +

(R+d1)ξ
2
X

X̄
− ξ ∗

Y ξX

X̄
, (42)
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taking expectation on both sides of equation (42), we get

Bias(t20) =
(R+d1)B−C

X̄
. (43)

Squaring both sides of equation (42) and taking expectation, we get

MSE(t20) = A+(R+d1)
2B−2(R+d1)C. (44)

Minimizing MSE(t20) for d1, we get the optimum value of d1 as do
1 = C

B −R.
Putting optimum value of d1 in equation (44), we get

MSEmin(t20) = A− C2

B
. (45)

The bias and MSEs in the next case can be obtained in similar steps used in Case-1. To
save space, only the results are given.

5.2. Case-2

5.2.1 t21 = k2ȳ∗

Bias(t21) = (k2 −1)Ȳ , (46)

MSE(t21) = (k2 −1)2Ȳ 2 + k2
2A. (47)

Optimum value of k2 is ko
2 =

Ȳ 2

Ȳ 2+A .

MSEmin(t21) =
AȲ 2

A+ Ȳ 2 . (48)

5.2.2 t22 = ȳ∗( X̄
x̄∗ )

Bias(t22) =
RD−E

X̄
, (49)

MSE(t22) = A+R2D−2RE. (50)

5.2.3 t23 = ȳ∗( x̄∗
X̄ )

Bias(t23) =
E
X̄
, (51)

MSE(t23) = A+R2D+2RE. (52)
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5.2.4 t24 = ȳ∗+b2(X̄ − x̄∗)

Bias(t24) = 0, (53)

MSE(t24) = A+b2
2D−2b2E. (54)

Optimum value of b2 is bo
2 =

E
D .

MSEmin(t24) = A− E2

D
. (55)

5.2.5 t25 = ȳ∗( X̄
x̄∗ )

α2

Bias(t25) =
α2(α2 +1)RD−2α2E

2X̄
, (56)

MSE(t25) = A+α
2
2 R2D−2α2RE. (57)

Optimum value of α2 is αo
2 = E

RD .

MSEmin(t25) = A− E2

D
. (58)

5.2.6 t26 = k21ȳ∗+ k22(X̄ − x̄∗)

Bias(t26) = (k21 −1)Ȳ , (59)

MSE(t26) = (k21 −1)2Ȳ 2 + k2
21A+ k2

22D−2k21k22E. (60)

Optimum values of k21 and k22 are ko
21 =

DȲ 2

DȲ 2+AD−E2 and ko
22 =

EȲ 2

DȲ 2+AD−E2 .

MSEmin(t26) =
Ȳ 2(AD−E2)

DȲ 2 +AD−E2 . (61)

5.2.7 t27 = ȳ∗ exp( X̄−x̄∗
X̄+x̄∗ )

Bias(t27) =
3RD−4E

8X̄
, (62)

MSE(t27) = A+
R2D

4
−RE. (63)

5.2.8 t28 = ȳ∗ exp( x̄∗−X̄
x̄∗+X̄ )

Bias(t28) =
4E −RD

8X̄
, (64)
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MSE(t28) = A+
R2D

4
+RE. (65)

5.2.9 t29 = ȳ∗[a2(
X̄
x̄∗ )+(1−a2)(

x̄∗
X̄ )]

Bias(t29) =
a1RD+(1−2a2)E

X̄
, (66)

MSE(t29) = A+(1−2a2)
2R2D+2R(1−2a2)E. (67)

Optimum value of a2 is ao
2 =

1
2 +

E
2RD .

MSEmin(t29) = A− E2

D
. (68)

5.2.10 t30 = [ȳ∗+d2(X̄ − x̄∗)]( X̄
x̄∗ )

Bias(t30) =
(R+b2)D−E

X̄
, (69)

MSE(t30) = A+(R+b2)
2D−2(R+b2)E. (70)

Optimum value of d2 is do
2 = E

D −R.

MSEmin(t30) = A− E2

D
. (71)

Note

The optimum MSEs of ti4, ti5, ti9 and t j0 are equal, where i = 1,2 and j = 2,3.

6. Efficiency comparison

In this section, we derive the conditions under which the estimators perform better than
the usual estimator ȳ∗. As we know, an estimator t will be more efficient than ȳ∗ whenever
the inequality var(ȳ∗)−MSE(t)> 0 is satisfied.

The variance of usual estimator ȳ∗ in the presence of non-response and measurement
error is var(ȳ∗) = λS2

Y +θS2
Y (2)+λS2

U +θS2
U(2). That is

var(ȳ∗) = A. (72)

6.1. Case-1

1. MSE(t11)< var(ȳ∗) if A2

A+Ȳ 2 > 0

2. MSE(t12)< var(ȳ∗) if C
B > R

2



STATISTICS IN TRANSITION new series, June 2023 107

3. MSE(t13)< var(ȳ∗) if C
B <−R

2

4. MSE(t14)< var(ȳ∗) if C2

B > 0

5. MSE(t15)< var(ȳ∗) if C2

B > 0

6. MSE(t16)< var(ȳ∗) if A2B−AC2+Ȳ 2C2

BȲ 2+AB−C2 > 0

7. MSE(t17)< var(ȳ∗) if C
B > R

4

8. MSE(t18)< var(ȳ∗) if C
B <−R

4

9. MSE(t19)< var(ȳ∗) if C2

B > 0

10. MSE(t20)< var(ȳ∗) if C2

B > 0

6.2. Case-2

1. MSE(t21)< var(ȳ∗) if A2

A+Ȳ 2 > 0

2. MSE(t22)< var(ȳ∗) if E
D > R

2

3. MSE(t23)< var(ȳ∗) if E
D <−R

2

4. MSE(t24)< var(ȳ∗) if E2

D > 0

5. MSE(t25)< var(ȳ∗) if E2

D > 0

6. MSE(t26)< var(ȳ∗) if A2D−AE2+Ȳ 2C2

DȲ 2+AD−E2 > 0

7. MSE(t27)< var(ȳ∗) if E
D > R

4

8. MSE(t28)< var(ȳ∗) if E
D <−R

4

9. MSE(t29)< var(ȳ∗) if E2

D > 0

10. MSE(t30)< var(ȳ∗) if E2

D > 0

7. Monte-Carlo Simulation

For validating the theoretical results in the previous sections, we perform a Monte-
Carlo simulation study. We have used the following information to generate the data in
R software: N = 4000, n = 500, X = rnorm(N,4,7), Y = 1+ 2X + ε , ε = rnorm(N,0,1),
U = rnorm(N,0,3), V = rnorm(N,0,3). We have checked the performance of estimators
for a different response rate. To get output more accurate, we have made 10000 replications
to the process.
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Percent relative efficiency (PRE) of an estimator t with respect to ȳ∗ is calculated by

PRE(t, ȳ∗) =
var(ȳ∗)
MSE(t)

×100. (73)

To get PRE without measurement error, we use MSEs without terms of measurement
error. That is, var(ȳ∗) = λS2

Y + θS2
Y (2) and A = AMSE = λS2

Y + θS2
Y (2), B = BMSE = λS2

X ,
D = DMSE = λS2

X +θS2
X(2) are used in expressions of MSEs of estimators.

We have compared the estimators using PREs in Table 1 and Table 2. From the definition
of PRE in equation (73), higher PRE of an estimator means smaller MSE.

Table 1: PREs of estimators with respect to ȳ∗ in Case-1

N1 N2

E
st

im
at

or PRE(., ȳ∗) without measurement error PRE(., ȳ∗) with measurement error

1/k 1/k

1/2 1/3 1/4 1/5 1/10 1/2 1/3 1/4 1/5 1/10

50
0

ȳ∗ 100 100 100 100 100 100 100 100 100 100
t11 100.48 100.54 100.60 100.66 100.97 100.50 100.57 100.63 100.69 101.01
t12 699.90 420.18 318.36 265.68 175.09 267.41 225.51 200.39 183.64 145.61
t13 24.62 26.86 28.98 30.98 39.49 24.26 26.49 28.59 30.57 39.03
t14 773.62 442.70 329.80 272.86 177.20 337.22 266.94 228.79 204.83 154.31
t15 773.62 442.70 329.80 272.86 177.20 337.22 266.94 228.79 204.83 154.31
t16 774.11 443.25 330.41 273.53 178.17 337.72 267.51 229.42 205.53 155.33
t17 337.94 267.35 229.06 205.03 154.39 266.60 225.00 200.02 183.37 145.49
t18 44.34 47.26 49.88 52.26 61.42 44.47 47.39 50.01 52.39 61.54
t19 773.62 442.70 329.80 272.86 177.20 337.22 266.94 228.79 204.83 154.31
t20 773.62 442.70 329.80 272.86 177.20 337.22 266.94 228.79 204.83 154.31

10
00

ȳ∗ 100 100 100 100 100 100 100 100 100 100
t11 100.54 100.66 100.79 100.91 101.52 100.57 100.69 100.82 100.95 101.59
t12 419.76 265.45 211.59 184.19 137.79 225.43 183.57 162.66 150.66 125.05
t13 26.87 30.99 34.67 37.98 50.51 26.49 30.58 34.24 37.53 50.03
t14 442.22 272.61 215.41 186.69 138.62 266.81 204.72 176.32 160.03 129.04
t15 442.22 272.61 215.41 186.69 138.62 266.81 204.72 176.32 160.03 129.04
t16 442.77 273.28 216.20 187.60 140.14 267.38 205.42 177.14 160.99 130.63
t17 267.21 204.92 176.44 160.12 129.08 224.92 183.29 162.47 149.98 124.99
t18 47.26 52.28 56.42 59.90 71.34 47.39 52.40 56.54 60.02 71.45
t19 442.22 272.61 215.41 186.69 138.62 266.81 204.72 176.32 160.03 129.04
t20 442.22 272.61 215.41 186.69 138.62 266.81 204.72 176.32 160.03 129.04

15
00

ȳ∗ 100 100 100 100 100 100 100 100 100 100
t11 100.60 100.79 100.97 101.15 102.06 100.63 100.82 101.01 101.20 102.16
t12 317.98 211.55 174.95 156.43 125.25 200.28 162.64 145.54 135.78 117.26
t13 28.99 34.68 39.52 43.69 58.13 28.60 34.24 39.06 43.21 57.66
t14 329.38 215.36 177.06 157.85 125.75 228.63 176.29 154.23 142.06 119.82
t15 329.38 215.36 177.06 157.85 125.75 228.63 176.29 154.23 142.06 119.82
t16 329.99 216.16 178.03 159.01 127.82 229.27 177.12 155.24 143.27 121.99
t17 228.89 176.41 154.30 142.11 119.84 199.92 162.45 145.42 135.69 117.23
t18 49.90 56.42 61.44 65.43 77.20 50.03 56.55 61.57 65.54 77.29
t19 329.38 215.36 177.06 157.85 125.75 228.63 176.29 154.23 142.06 119.82
t20 329.38 215.36 177.06 157.85 125.75 228.63 176.29 154.23 142.06 119.82
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Table 2: PREs of estimators with respect to ȳ∗ in Case-2

N1 N2
E

st
im

at
or PRE(., ȳ∗) without measurement error PRE(., ȳ∗) with measurement error

1/k 1/k

35
00

50
0

1/2 1/3 1/4 1/5 1/10 1/2 1/3 1/4 1/5 1/10

ȳ∗ 100 100 100 100 100 100 100 100 100 100

t21 100.48 100.54 100.60 100.66 100.97 100.50 100.57 100.63 100.69 101.01

t22 4845.82 4845.35 4844.98 4844.68 4843.73 351.22 351.15 351.11 351.07 350.94

t23 22.23 22.23 22.23 22.23 22.23 21.89 21.89 21.89 21.89 21.89

t24 19691.95 19684.57 196778.67 19673.84 19658.76 509.55 509.47 509.41 509.36 509.19

t25 19691.95 19684.57 196778.67 19673.84 19658.76 509.55 509.47 509.41 509.36 509.19

t26 19692.44 19685.12 19679.28 19674.51 19659.73 510.06 510.05 510.05 510.06 510.21

t27 511.53 511.52 511.52 511.52 511.52 399.68 399.66 399.64 349.63 399.59

t28 41.08 41.08 41.08 41.08 41.08 41.20 41.20 41.20 41.20 41.20

t29 19691.95 19684.57 196778.67 19673.84 19658.76 509.55 509.47 509.41 509.36 509.19

t30 19691.95 19684.57 196778.67 19673.84 19658.76 509.55 509.47 509.41 509.36 509.19

30
00

10
00

ȳ∗ 100 100 100 100 100 100 100 100 100 100

t21 100.54 100.66 100.79 100.91 101.52 100.57 100.69 100.82 100.95 101.59

t22 4845.45 4845.65 4845.94 4845.29 4844.90 351.31 351.32 351.33 351.33

t23 22.23 22.23 22.23 22.23 22.23 21.89 21.89 21.89 21.89 21.89

t24 19692.31 19686.50 19682.48 19679.54 19671.88 509.67 509.68 509.68 509.69 509.70

t25 19692.31 19686.50 19682.48 19679.54 19671.88 509.67 509.68 509.68 509.69 509.70

t26 19692.86 19687.17 19683.27 19680.45 19673.40 510.24 510.38 510.51 510.64 511.29

t27 511.53 511.53 511.53 511.53 511.51 349.71 349.70 349.70 349.70 349.70

t28 41.08 41.08 41.08 41.08 41.08 41.20 41.20 41.20 41.20 41.20

t29 19692.31 19686.50 19682.48 19679.54 19671.88 509.67 509.68 509.68 509.69 509.70

t30 19692.31 19686.50 19682.48 19679.54 19671.88 509.67 509.68 509.68 509.69 509.70

25
00

15
00

ȳ∗ 100 100 100 100 100 100 100 100 100 100

t21 100.60 100.79 100.97 101.15 102.06 100.63 100.82 101.01 101.20 102.16

t22 4846.28 4846.21 4846.17 48461.14 4846.07 351.36 351.40 351.42 351.44 351.47

t23 22.23 22.23 22.23 22.23 22.23 21.89 21.89 21.89 21.89 21.90

t24 19693.88 19689.81 19687.26 19685.52 19681.43 509.74 509.78 509.80 509.82 509.86

t25 19693.88 19689.81 19687.26 19685.52 19681.43 509.74 509.78 509.80 509.82 509.86

t26 19694.49 19690.60 19688.24 19686.68 19683.50 510.37 510.61 510.82 511.03 512.03

t27 511.52 511.52 511.51 511.51 511.51 349.72 349.73 349.74 349.74 349.75

t28 41.08 41.08 41.08 41.08 41.08 41.20 41.20 41.20 41.20 41.20

t29 19693.88 19689.81 19687.26 19685.52 19681.43 509.74 509.78 509.80 509.82 509.86

t30 19693.88 19689.81 19687.26 19685.52 19681.43 509.74 509.78 509.80 509.82 509.86
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From Table 1 and 2, it is concluded that:

1. Searls (1964) estimator ti2 has minute advantage over usual estimator ȳ∗.

2. PREs of estimators ti5, ti9 and t j0 are equal to the PRE of regression estimator ti4, as
their optimum MSEs are the same.

3. Rao (1991) estimator ti6 perform slightly better than regression estimator.

4. In all the estimators, Rao (1991) estimator ti6 performs best in terms of having highest
PREs.

Here i = 1,2 and j = 2,3.

8. Conclusion

We have considered ten estimators of population mean and studied them in the context
of non-response and measurement error. We have obtained the expressions for bias and
MSE for all the estimators in various cases. It is noted that optimum MSEs of Srivastava
(1967) estimator ti5, Singh and Espejo (2003) estimator ti9 and Kadilar and Cingi (2004)
estimator t j0 are the same which is equal to the MSE of the regression estimator ti4 within
the same sampling strategy i, i = 1,2; j = 2,3. This is also verified in the simulation study.
It is also worth to mention that Rao (1991) difference estimator ti6 performs better than other
estimators, although its efficiency over the regression estimator is very minute.
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Appendix

Here, we have to prove the equations (4), (5), (6), (7) and (8).
Using equation (1), we have

ξ
∗
Y = ȳ∗− Ȳ .

Squaring and taking expectation on both sides, we have

E(ξ ∗
Y

2) = E(ȳ∗− Ȳ )2,

that is,
E(ξ ∗

Y
2) =V (ȳ∗). (74)

here, V represents variance.

Since ȳ∗ = ȳ∗t + Ū∗, so V (ȳ∗) = V (ȳ∗t ) +V (Ū∗) +Cov(ȳ∗t ,Ū
∗). As y and U are independent, so

Cov(ȳ∗t ,Ū
∗) = 0. We have,

V (ȳ∗) =V (ȳ∗t )+V (Ū∗). (75)

Now, we have to derive V (ȳ∗t ).

ȳ∗t =
(n1

n

)
ȳn1 +

(n2

n

)
ȳr,

so,
V (ȳ∗t ) =V1[E2(ȳ∗t |n1,n2)]+E1[V2(ȳ∗t |n1,n2)]. (76)

Considering the first part of (76), we have

V1[E2(ȳ∗t |n1,n2)] = V1

[
E2

{(n1

n
ȳn1 +

n2

n
ȳr

)
|n1,n2

}]
= V1

[n1

n
E2(ȳn1)|n1 +

n2

n
E2(ȳr)|n2

]
= V1

[n1

n
ȳ+

n2

n
ȳ
]

= V1(ȳ)

= λS2
Y . (77)

Considering the second part of equation (76), we have

E1[V2(ȳ∗t |n1,n2)] = E1

[
V2

{(n1

n
ȳn1 +

n2

n
ȳr

)
|n1,n2

}]
= E1

[
V2

{n1

n
ȳn1 |n1

}
+V2

{n2

n
ȳr|n2

}]
= E1

[
n2

2
n2

(
1
r
− 1

n2

)
S2

r

]

=
n2

2
n2

(
1
r
− 1

n2

)
E1(S2

r )

=
n2

n2

(n2

r
−1

)
S2

Y (2)

=
W2(k−1)

n
S2

Y (2)

= θS2
Y (2). (78)
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Using equations (77), (78) in (76), we have

V (ȳ∗t ) = λS2
Y +θS2

Y (2). (79)

Similarly, we can derive
V (x̄∗t ) = λS2

X +θS2
X(2), (80)

V (Ū∗) = λS2
U +θS2

U(2), (81)

V (V̄ ∗) = λS2
V +θS2

V (2). (82)

So, using equations (79), (81) in (75), we have

V (ȳ∗) = λ (S2
Y +S2

U )+θ(S2
Y (2)+S2

Y (2)). (83)

From equation (74) and (83), we have

E(ξ ∗
Y

2) = λ (S2
Y +S2

U )+θ(S2
Y (2)+S2

Y (2)). (84)

Which completes the proof of equation (4).

Similarly, we can show that

E(ξ ∗
X

2) = λ{S2
X +S2

V }+θ{S2
X(2)+S2

V (2)}, (85)

and
E(ξ 2

X ) = λ{S2
X +S2

V }. (86)

Now, using equation (1) and (3), we have

ξ
∗
Y ξ

∗
X = (ȳ∗− Ȳ )(x̄∗− X̄),

Taking expectation on both sides, we have

E(ξ ∗
Y ξ

∗
X ) =Cov(ȳ∗, x̄∗). (87)

Now,
Cov(ȳ∗, x̄∗) = E1[Cov2{(ȳ∗, x̄∗)|n1,n2}]+Cov1[E2{x̄∗|n1,n2},E2{ȳ∗|n1,n2}], (88)

considering the second part,

Cov1[E2{x̄∗|n1,n2},E2{ȳ∗|n1,n2}] = Cov1[E2{(w1x̄n1 +w2x̄r)|n1,n2},
E2{(w1ȳn1 +w2ȳr)|n1,n2}]

= Cov1[{w1x̄+w2x̄},{w1ȳ+w2ȳ}]
= Cov(x̄, ȳ)

= λρSY SX . (89)
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Now, the first part of equation (88)

E1[Cov2{(ȳ∗, x̄∗)|n1,n2}] = E1[Cov2{(w1x̄n1 +w2x̄r)|n1,n2,(w1ȳn1 +w2ȳr)|n1,n2}]
= E1[Cov2{(w1x̄n1 ,w1ȳn1)|n1,n2}+Cov2{(w1x̄n1 ,w2ȳr)|n1,n2}

+Cov2{(w2x̄r,w1ȳn1)|n1,n2}+Cov2{(w2x̄r,w2ȳr)|n1,n2}]
= E1[(w2

2Cov2{x̄r, ȳr)|n2}]

= w2
2

(
1
r
− 1

n2

)
E1(SrY X(2))

=
n2

n2

(n2

r
−1

)
SY X(2)

= θSY X(2)

= θρ2SY (2)SX(2). (90)

Using equations (89), (90) in (88), we have

Cov(ȳ∗, x̄∗) = λρSY SX +θρ2SY (2)SX(2). (91)

From equations (87) and (91), we have

E(ξ ∗
Y ξ

∗
X ) = λρSY SX +θρ2SY (2)SX(2). (92)

Similarly, we can derive
E(ξ ∗

Y ξX ) = λρSY SX . (93)


